Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
उत्तर
मान लीजिए I = `int_0^1 ("d"x)/("e"^x + "e"^-x`
= `int_0^1 ("d"x)/("e"^x + 1/"e"^x`
= `int_0^1 ("d"x)/(("e"^(2x) +1)/"e"^x)`
= `int_0^1 ("e"^x"d"x)/("e"^(2x) + 1)`
ex = t रखो
⇒ ex dx = dt
सीमा बदलना, हमारे पास है
जब x = 0
∴ t = e0 = 1
जब x = 1
∴ I = `int_1^"e" ("dt")/("t"^2 + 1)`
= `[tan^-1 "t"] _1^e`
= `[tan^-1 "e" - tan^-1 (1)]`
= `tan ^1 "e" - pi/4`
अत:, I = `tan^-1 "e" - pi/4`
APPEARS IN
संबंधित प्रश्न
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.