मराठी

D∫01x(tan-1x)2dx का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।

बेरीज

उत्तर

I = `int_0^1 x (tan^-1 x)^2 "d"x` 

समाकलन द्वारा हमें प्राप्त होता है:

I = `x^2 [(tan^-1 x)^2]_0^1 - 1/2 int_0^1 x^2 * 2 (tan^-1 x)/(1 + x^2)  "d"x`

= `pi^2/32 - int_0^1 x^2/(1 + x^2) * tan^-1 x"d"x`

= `pi^2/32 - "I"_1`, जहाँ I1 = `int_0^1 x^2/(1 + x^2) tan^-1 x"d"x` है।

अब I1 = `int_0^1 (x^2 + 1 - 1)/(1 + x^2) tan^-1x "d"x`

= `int_0^1 tan^-1 x"d"x - int_0^1 1/(1 + x^2) tan^-1 x"d"x`

= `"I"_2 - 1/2 ((tan^-1x)^2)_0^1`

= `"I"_2 - pi^2/32`

यहाँ I2 = `int_0^1 tan^-1 x"d"x = (x tan^-1x)_0^1 - int_0^1 x/(1 + x^2)  "d"x`

= `pi/4 - 1/2(log|1 + x^2|)_0^1`

= `pi/4 - 1/2 log2`

इस प्रकार,  I1 = `pi/4 - 1/2 log 2 - pi^2/32`

अत:, I = `pi^2/32 - pi/4 + 1/2 log2 + pi^2/32`

= `pi^2/16 - pi/4 + 1/2 log2`

= `(pi^2 - 4pi)/16 + log sqrt(2)`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - हल किए हुए उदाहरण [पृष्ठ १५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
हल किए हुए उदाहरण | Q 18 | पृष्ठ १५३

संबंधित प्रश्‍न

x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।


`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


 `("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है


`int tan^-1 sqrtx  "d"x` बराबर है


`int x^3/(x + 1)` बराबर है


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×