Advertisements
Advertisements
प्रश्न
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
उत्तर
I = `int_0^1 x (tan^-1 x)^2 "d"x`
समाकलन द्वारा हमें प्राप्त होता है:
I = `x^2 [(tan^-1 x)^2]_0^1 - 1/2 int_0^1 x^2 * 2 (tan^-1 x)/(1 + x^2) "d"x`
= `pi^2/32 - int_0^1 x^2/(1 + x^2) * tan^-1 x"d"x`
= `pi^2/32 - "I"_1`, जहाँ I1 = `int_0^1 x^2/(1 + x^2) tan^-1 x"d"x` है।
अब I1 = `int_0^1 (x^2 + 1 - 1)/(1 + x^2) tan^-1x "d"x`
= `int_0^1 tan^-1 x"d"x - int_0^1 1/(1 + x^2) tan^-1 x"d"x`
= `"I"_2 - 1/2 ((tan^-1x)^2)_0^1`
= `"I"_2 - pi^2/32`
यहाँ I2 = `int_0^1 tan^-1 x"d"x = (x tan^-1x)_0^1 - int_0^1 x/(1 + x^2) "d"x`
= `pi/4 - 1/2(log|1 + x^2|)_0^1`
= `pi/4 - 1/2 log2`
इस प्रकार, I1 = `pi/4 - 1/2 log 2 - pi^2/32`
अत:, I = `pi^2/32 - pi/4 + 1/2 log2 + pi^2/32`
= `pi^2/16 - pi/4 + 1/2 log2`
= `(pi^2 - 4pi)/16 + log sqrt(2)`
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
`int tan^-1 sqrtx "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int x^3/(x + 1)` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.