Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
उत्तर
मान लीजिए I = `int sqrt(("a" + x)/("a" - x)) "d"x`
x = `"a" cos 2theta` रखिए
⇒ dx = `-"a" * sin 2theta * 2 * "d"theta`
∴ I = `-2int sqrt(("a" + "a" cos 2theta)/("a" - "a" cos 2theta)) * "a" sin 2theta "d"theta`
= `-2"a" int sqrt((1 + cos 2theta)/(1 - cos 2theta)) sin 2theta "d"theta`
= `-2"a" int sqrt((2 cos^2theta)/(2 sin^2 theta)) sin 2theta "d"theta`
= `-2"a" int cot theta * sin 2theta "d"theta`
= `-2"a" int costheta/sintheta * 2 sin theta cos theta "d" theta`
= `-4"a" int cos^2theta "d"theta`
= `-2"a" int (1 + cos 2theta)"d"theta`
= `-2"a" [theta + 1/2 sin 2theta] + "C"`
= `-2"a" [1/2 cos^-1 x/"a" + 1/2 sqrt(1 - x^2/"a"^2)] + "C"`
= `-"a" [cos^-1(x/"a") + sqrt(1 - x^2/"a"^2)] + "C"`
APPEARS IN
संबंधित प्रश्न
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int x^3/(x + 1)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______