Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
उत्तर
मान लीजिए I = `int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`
= `int_1^2 ("d"x)/sqrt(2x - x^2 - 2 + x)`
= `int_1^2 ("d"x)/sqrt(-x^2 + 3x - 2)`
= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 2)`
= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 9/4 - 9/4 + 2))` .....[पूर्ण वर्ग बनाना]
= `int_1^2 ("d"x)/sqrt(-[(x - 3/2)^2 - 1/4])`
= `int_1^2 ("dx)/sqrt(1/4 - (x - 3/2)^2)`
= `int_1^2 ("d"x)/sqrt((1/2)^2 - (x - 3/2)^2)`
= `[sin^-1 ((x - 3/2)/(1/2))]_1^2`
= `[sin^-1 ((2x - 3)/1)]_1^2`
= `sin^-1 (4 - 3) - sin^-1 (2 - 3)`
= `sin^-1 (1) - sin^-1 (-1)`
= `sin^-1 (1) + sin^-1 (1)`
= `2 sin^-1 (1)`
= `2 xx pi/2`
= `pi`
अत:, I = `pi`
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.