Advertisements
Advertisements
प्रश्न
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
विकल्प
log 2
2 log 2
`1/2log2`
4 log 2
उत्तर
सही उत्तर 2 log 2 है।
व्याख्या:
क्योंकि I = `int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x`
= `int_(-1)^1 x^3/(x^2 + 2|x| + 1) + int_(-1)^1 (|x| + 1)/(x^2 + 2|x| + 1)"d"x`
= `0 + 2 int_0^1 (|x| + 1)/((|x| + 1)^2) "d"x` ....[विषम फलन + सम फलन]
= `2 int_0^1 (x + 1)/(x + 1)^2 "d"x`
= `2 int_0^1 1/(x + 1) "d"x`
= `2|log|x + 1|]_0^1`
= 2 log 2.
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.