हिंदी

निम्नलिखित के मान निकालिए- d∫tan2xsec4xdx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`

योग

उत्तर

मान लीजिए I = `int tan^2x sec^4 x"d"x`

= `int tan^2x sec^2x sec^2 x"d"x`

= `int tan^2x (1 + tan^2x)sec^2 x"d"x`

tan x = t रखिए

⇒ `sec^2x "d"x` = dt

∴ I = `int "t"^2(1 + "t"^2)"dt"`

= `int("t"^2 + "t"^4)"dt"`

= `"t"^3/3 + "t"^5/5 + "C"`

= `(tan^5x)/5 + (tan^3x)/3 + "C"`

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 7 | पृष्ठ १६०

संबंधित प्रश्न

x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।


`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int sinx/(3 + 4cos^2x) "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×