हिंदी

निम्नलिखित का मान निकालिए- d∫0πxlogsinxdx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`

योग

उत्तर

मान लीजिए I = `int_0^pi x log sin x "d"x` ......(i)

= `int_0^pi (pi - x) log sin(pi - x) "d"x`  ....`["उपयोग" int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)"d"x]`

I = `int_0^pi (pi - x) log sinx  "d"x`  ......(ii)

(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,

2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`

2I = `int_0^pi pilog sinx  "d"x`

2I = `2oi int_0^(pi/2) log sinx  "d"x`  ......`["क्योंकि" int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`

∴ I = `pi int_0^(pi/2) log sinx  "d"x`   .....(iii)

I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`

I = `pi int_0^(pi/2) log cos x  "d"x`  ......(iv)

(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,

2I = `pi int_0^(pi/2) (log sinx + log cosx)  "d"x`

2I = `pi int_0^(pi/2) log sin x cos x  "d"x`

= `pi int_0^(pi/2)  (log2 sin x cosx)/2  "d"x`

2I = `pi int_0^(pi/2) log sin 2x  "d"x - pi int_0^(pi/2) log 2  "d"x`

2x = t रखिए

⇒ 2 dx = dt

⇒ dx = `"dt"/2`

2I = `pi int_0^pi  log sin "t"  "dt" - pi * log 2 int_0^(pi/2)  1 "d"x`  ....[सीमा बदलना]

2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[समीकरण (iii) से]

2I – I = `- pi^2/2 log 2`

तो I = `pi^2/2 log (1/2)`

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 46 | पृष्ठ १६२

संबंधित प्रश्न

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


`int "e"^x (cosx - sinx)"d"x`  बराबर है


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int x/(x^4 - 1) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×