Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
उत्तर
मान लीजिए I = `int_0^pi x log sin x "d"x` ......(i)
= `int_0^pi (pi - x) log sin(pi - x) "d"x` ....`["उपयोग" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
I = `int_0^pi (pi - x) log sinx "d"x` ......(ii)
(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,
2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`
2I = `int_0^pi pilog sinx "d"x`
2I = `2oi int_0^(pi/2) log sinx "d"x` ......`["क्योंकि" int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`
∴ I = `pi int_0^(pi/2) log sinx "d"x` .....(iii)
I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`
I = `pi int_0^(pi/2) log cos x "d"x` ......(iv)
(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,
2I = `pi int_0^(pi/2) (log sinx + log cosx) "d"x`
2I = `pi int_0^(pi/2) log sin x cos x "d"x`
= `pi int_0^(pi/2) (log2 sin x cosx)/2 "d"x`
2I = `pi int_0^(pi/2) log sin 2x "d"x - pi int_0^(pi/2) log 2 "d"x`
2x = t रखिए
⇒ 2 dx = dt
⇒ dx = `"dt"/2`
2I = `pi int_0^pi log sin "t" "dt" - pi * log 2 int_0^(pi/2) 1 "d"x` ....[सीमा बदलना]
2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[समीकरण (iii) से]
2I – I = `- pi^2/2 log 2`
तो I = `pi^2/2 log (1/2)`
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______