Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
उत्तर
मान लीजिए I = `int_0^1 x log(1 + 2x) "d"x`
= `[log (1 + 2x) x^2/2]_0^1 - int_0^1 2/(1 + 2x) x^2/2 "d"x` .....[भागों द्वारा एकीकृत]
= `1/2 [x^2 log (1 + 2x)]_0^1 - int_0^1 x^2/(1 + 2x) "d"x`
= `1/2 [1 log 3 - 0] - int_0^1 (x/2 - x/(2(1 + 2x)))"d"x`
= ` 1/2 log 3 - 1/2 int_0^1 x "d"x + 1/2 int_0^1 x/(1 + 2x) "d"x`
= `1/2 log 3 - 1/2 [x^2/2]_0^1 + 1/4 int_0^1 ((2x + 1 - 1))/((2x + 1)) "d"x`
= `1/2 log 3 - 1/2 [1/2 - 0] + 1/4 int_0^1 "d"x - 1/4 int_0^1 1/(1 + 2x) "d"x`
= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log (2x + 1)]_0^1`
= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log 3 - log 1]`
= `1/2 log 3 - 1/8 log 3`
= `3/8 log 3`
APPEARS IN
संबंधित प्रश्न
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है