Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
उत्तर
मान लीजिए I = `int_0^pi x sin x cos^2x "d"x` ....(i)
I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`
I = `int_0^pi (pi - x) sin x cos^2x "d"x` .....(ii)
(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,
2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`
2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`
2I = `int__0^pi pi sin x cos^2x "d"x`
= `pi int_0^pi sin x cos^2x "d"x`
cos x = t रखें
⇒ – sin x dx = dt
⇒ sin x dx = – dt
सीमाएँ बदलना, हमारे पास है
जब x = 0
t = cos 0 = 1
जब x = `pi`
= cos `pi` = – 1
2I = `pi int_1^(-1) - "t"^2 "dt"`
= `- pi int_1^(-1) "t"^2 "dt"`
2I = `pi int_(-1)^1 "t"^2 "dt"` ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`
2I = `pi["t"^3/3]_(-1)^1`
= `pi[1/3 + 1/3]`
= `pi(2/3)`
∴ I = `pi/3`
APPEARS IN
संबंधित प्रश्न
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है