हिंदी

निम्नलिखित का मान निकालिए- d∫0xxsinxcos2xdx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`

योग

उत्तर

मान लीजिए I = `int_0^pi x sin x cos^2x "d"x`  ....(i)

I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`

I = `int_0^pi (pi - x) sin x cos^2x "d"x`  .....(ii)

(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,

2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`

2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`

2I = `int__0^pi pi sin x cos^2x "d"x`

= `pi int_0^pi sin x cos^2x "d"x`

cos x = t रखें

⇒ – sin x dx = dt

⇒ sin x dx = – dt

सीमाएँ बदलना, हमारे पास है

जब x = 0 

t = cos 0 = 1

जब x = `pi` 

= cos `pi` = – 1

2I = `pi int_1^(-1) - "t"^2 "dt"`

= `- pi int_1^(-1) "t"^2 "dt"`

2I = `pi int_(-1)^1 "t"^2 "dt"`  ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`

2I = `pi["t"^3/3]_(-1)^1`

= `pi[1/3 + 1/3]`

= `pi(2/3)`

∴ I = `pi/3`

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 33 | पृष्ठ १६१

संबंधित प्रश्न

`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।


`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


 यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित का सत्यापन कीजिए-

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(2"a"x - x^2)  "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


 `("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है


`int tan^-1 sqrtx  "d"x` बराबर है


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×