हिंदी

निम्नलिखित का सत्यापन कीजिए- dC∫x-12x+3dx=x-log|(2x+3)2|+C - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`

योग

उत्तर

L.H.S. = `int (2x - 1)/(2x + 3) "d"x`

⇒ `int (1 - 4/(2x + 3)) "d"x`  .....[अंश को हर से विभाजित करना]

⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`

⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`

⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`

⇒ `x - 2 log |x + 3/2| + "C"`

⇒ `x - 2 log |(2x + 3)/2| + "C"`

⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]

⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`

⇒ `x - log |(2x + 3)^2| + "C"_1`

⇒ R.H.S.  ......[जहाँ C1 = C – log 22]

L.H.S. = R.H.S.

इसलिए साबित हुआ।

L.H.S. = `int (2x - 1)/(2x + 3) "d"x`

⇒ `int (1 - 4/(2x + 3)) "d"x`  .....[अंश को भाजक से विभाजित करना]

⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`

⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`

⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`

⇒ `x - 2 log |x + 3/2| + "C"`

⇒ `x - 2 log |(2x + 3)/2| + "C"`

⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]

⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`

⇒ `x - log |(2x + 3)^2| + "C"_1`

⇒ R.H.S.  ......[Where C1 = C – log 22]

L.H.S. = R.H.S.

इसलिए साबित हुआ।

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 1 | पृष्ठ १५९

संबंधित प्रश्न

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


 यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×