Advertisements
Advertisements
Question
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Solution
L.H.S. = `int (2x - 1)/(2x + 3) "d"x`
⇒ `int (1 - 4/(2x + 3)) "d"x` .....[अंश को हर से विभाजित करना]
⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`
⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`
⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`
⇒ `x - 2 log |x + 3/2| + "C"`
⇒ `x - 2 log |(2x + 3)/2| + "C"`
⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]
⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`
⇒ `x - log |(2x + 3)^2| + "C"_1`
⇒ R.H.S. ......[जहाँ C1 = C – log 22]
L.H.S. = R.H.S.
इसलिए साबित हुआ।
L.H.S. = `int (2x - 1)/(2x + 3) "d"x`
⇒ `int (1 - 4/(2x + 3)) "d"x` .....[अंश को भाजक से विभाजित करना]
⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`
⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`
⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`
⇒ `x - 2 log |x + 3/2| + "C"`
⇒ `x - 2 log |(2x + 3)/2| + "C"`
⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]
⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`
⇒ `x - log |(2x + 3)^2| + "C"_1`
⇒ R.H.S. ......[Where C1 = C – log 22]
L.H.S. = R.H.S.
इसलिए साबित हुआ।
APPEARS IN
RELATED QUESTIONS
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int "e"^x (cosx - sinx)"d"x` बराबर है
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int x^3/(x + 1)` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.