Advertisements
Advertisements
Question
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
Options
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
Solution
सही उत्तर `underline("a" = 1/3, "b" = –1)` है।
व्याख्या:
मान लीजिए I = `intx^3/sqrt(1 + x^2) "d"x`
1 + x2 = t रखें
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`
= `1/2 int sqrt("t") "dt" - 1/2 int "t"^((-1)/2) "dt"`
= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`
= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`
लेकिन I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`
हमें प्राप्त समान पदों की तुलना करने पर,
∴ a = `1/3` और b = –1.
APPEARS IN
RELATED QUESTIONS
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int x^3/(x + 1)` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है