Advertisements
Advertisements
Question
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Solution
मान लीजिए I = `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
आंशिक अंश में हल करते हुए, हम डालते हैं
`(2x - 1)/((x - 1)(x + 2)(x - 3)) = "A"/(x - 1) + "B"/(x + 2) + "C"/(x - 3)`
⇒ 2x – 1 = A(x + 2)(x – 3) + B(x – 1)(x – 3) + C(x – 1)(x + 2)
x = 1 रखो
1 = A(3)(– 2)
⇒ A = `-1/6`
x = – 2 रखो
– 5 = B(– 3)(– 5)
⇒ B = `- 1/3`
x = 3 रखो
5 = C(2)(5)
⇒ C = `1/2`
∴ `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = - 1/6 int 1/(x - 1) "d"x - 1/3 int 1/(x + 2) "d"x + 1/2 int 1/(x - 3) "d"x`
= `- 1/6 log |x - 1| - 1/3 log|x + 2| + 1/2 log|x - 3| + "C"`
= `- log|x - 1|^(1/6) - log(x + 2)^(1/3) + log(x - 3)^(1/3) + "C"`
अत:, `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = log[sqrt(x - 3)/((x - 1)^(1/6) (x + 2)^(1/3))] + "C"`
APPEARS IN
RELATED QUESTIONS
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int x^3/(x + 1)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.