English

यदि ettdt∫01et1+tdt = a, है, तब ettdt∫01et(1+t)2dt बराबर है - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है

Options

  • `"a" - 1 + "e"/2`

  • `"a" + 1 - "e"/2`

  • `"a" - 1 - "e"/2`

  • `"a" + 1 + "e"/2`

MCQ

Solution

सही उत्तर `underline("a" + 1 - "e"/2)`  है।

व्याख्या:

क्योंकि I = `int_0^1 "e"^"t"/(1 + "t") "dt"`

= `|1/(1 + "t") "e"^"t"|_0^1 + int_0^1 "e"^"t"/(1 + "t")^2 "dt"` = a  ...(दिया है)

अत:, `int_0^1 "e"^"t"/(1 + "t")^2 = "a" - "e"/2 + 1`

shaalaa.com
समाकलन
  Is there an error in this question or solution?
Chapter 7: समाकल - हल किए हुए उदाहरण [Page 158]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 7 समाकल
हल किए हुए उदाहरण | Q 27 | Page 158

RELATED QUESTIONS

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 ("d"x)/("e"^x + "e"^-x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×