Advertisements
Advertisements
Question
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
Solution
यहाँ a = -1, b = 2, तथा h = `2 + 1/"n"` है।
अर्थात्, nh = 3 और f (x) = 7x - 5 है।
अब, हमें प्राप्त है:
`int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"["f"(-1) + "f"(-1 + "h") + "f"(-1 + 2"h") + ... + (-1 + ("n" - 1)"h")]`
ध्यान दीजिए कि
f(–1) = –7 – 5 = –12
f(–1 + h) = –7 + 7h – 5 = –12 + 7h
f(–1 + (n –1)h) = 7 (n – 1)h – 12.
अतः, `int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"[(-12) + (7"h" - 12) + (14"h" - 12) + ... + (7("n" - 1)"h" - 12)]`
= `lim_("h" -> 0) "h"[7"h"[1 + 2 + ... +("n" - 1)] - 12"n"]`
= `lim_("h" -> 0) "h"[7"h" (("n" - 1)"n")/2 - 12 "n"]`
= `lim_("h" -> 0) [7/2("nh")("nh" - "h") - 12"nh"]`
= `7/2(3 - 0) - 12 xx 3`
= `(7 xx 9)/2 - 36`
= `(-9)/2`.
APPEARS IN
RELATED QUESTIONS
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int (sin^6x)/(cos^8x) "d"x` = ______.
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है