Advertisements
Advertisements
Question
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
Solution
मान लीजिए I = `int "e"^(-3x) cos^3x "d"x`
= `int "e"^(-3x) ((cos 3x + 3 cosx)/4) "d"x`
= `1/4 int ("e"^(-3x) cos 3x + "e"^(-3x) cos x) "d"x`
= `1/4 ("I"_1 + "I"_2)`
I1 = `int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) int cos 3x "d"x - int (("e"^(-3x)) int cos 3x "d"x) "d"x`
= `"e"^(-3x) sin (3x)/3- int - 3"e"^(-3x) sin (3x)/3 "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) sin 3x "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) cos (3x)/3 - int (("e"^(-3x))"'" int sin 3 x "d"x)"d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - "I"_1`
⇒ 2I = ("e"^(-3x))/3 (sin 3x - cos 3x)`
⇒ I1 = `("e"^(-3x))/6 (sin 3x - cos 3x) + "C"_1`
उसी प्रकार I2 = `int "e"^(-3x) cos x"d"x`
= `("e"^(-3x))/10 (sin 3x - 3 cos 3x) + "C"_2`
⇒ I = `1/4 [("e"^(-3x))/6 (sin 3x - cos 3x) + "e"^(-3x)/10 (sin 3x - 3 cos 3x)] + "C"`
APPEARS IN
RELATED QUESTIONS
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.