Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
उत्तर
मान लीजिए I = `int "e"^(-3x) cos^3x "d"x`
= `int "e"^(-3x) ((cos 3x + 3 cosx)/4) "d"x`
= `1/4 int ("e"^(-3x) cos 3x + "e"^(-3x) cos x) "d"x`
= `1/4 ("I"_1 + "I"_2)`
I1 = `int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) int cos 3x "d"x - int (("e"^(-3x)) int cos 3x "d"x) "d"x`
= `"e"^(-3x) sin (3x)/3- int - 3"e"^(-3x) sin (3x)/3 "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) sin 3x "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) cos (3x)/3 - int (("e"^(-3x))"'" int sin 3 x "d"x)"d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - "I"_1`
⇒ 2I = ("e"^(-3x))/3 (sin 3x - cos 3x)`
⇒ I1 = `("e"^(-3x))/6 (sin 3x - cos 3x) + "C"_1`
उसी प्रकार I2 = `int "e"^(-3x) cos x"d"x`
= `("e"^(-3x))/10 (sin 3x - 3 cos 3x) + "C"_2`
⇒ I = `1/4 [("e"^(-3x))/6 (sin 3x - cos 3x) + "e"^(-3x)/10 (sin 3x - 3 cos 3x)] + "C"`
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`int sinx/(3 + 4cos^2x) "d"x` = ______.