Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
उत्तर
मान लीजिए I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x` ......(i)
= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x` ......`["क्योंकि" int_"a" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`
= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`
= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)
(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,
2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`
= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`
= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`
∴ 2I = `int_(-pi/4)^(pi/4) log cos2x "d"x`
2I = `2 int_0^(pi/4) log cos 2x "d"x` .....`["क्योंकि" int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x "if" "f"(-x) = "f"(x)]`
∴ I = `int_0^(pi/4) log cos 2x "d"x`
2x = t रखो
⇒ dx = `"dt"//2`
हमें मिलने वाली सीमाओं को बदलना
जब x = 0
∴ t = 0
जब x = `pi/4`
∴ t = `pi/2`
I = `1/2 int_0^(pi/2) log cos "t" "dt"` ......(iii)
I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`
I = `1/2 int_0^(pi/2) log sin "t" "dt"` ......(iv)
(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,
2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`
⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t" "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`
⇒ 4I = `int_0^(pi/2) log sin 2"t" "dt" - int_0^(pi/2) log 2 "dt"`
2t = u रखिए
⇒ 2dt = du
⇒ dt = `"du"/2`
∴ 4I = `1/2 int_0^pi log sin "u" "du" - int_0^(pi/2) log 2 * "dt"`
⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u" "du" - log 2["t"]_0^(pi/2)`
⇒ 4I = `int_0^(pi/2) log sin "u" "du" - log 2 * pi/2`
⇒ 4I = `2"I" - pi/2 log 2` .....[समीकरण (ii) से]
⇒ 2I = `- pi/2 log 2`
⇒ I = `pi/4 log 1/2`
∴ I = `pi/4 log 1/2`.
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है