हिंदी

निम्नलिखित का मान निकालिए- dab∫x2dx(x2+a2)(x2+b2) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `

योग

उत्तर

मान लीजिए I = `int (x^2)/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x`

आंशिक भिन्न के प्रयोजन के लिए x2 = t रखें।

हमें `"t"/(("t" + "a"^2)("t" + "b"^2))` मिलता है

`"t"/(("t" + "a"^2)("t" + "b"^2)) = "A"/("T" + "a"^2) + "B"/("t" + "b"^2)` रखो

⇒ `"t"/(("t" + "a"^2)("t" + "b"^2)) = ("A"("t" + "b"^2) + "B"("t" + "a"^2))/(("t" + "a"^2)("t" + "b"^2))`

⇒ t = At + Ab2 + Bt + Ba2

समान पदों की तुलना करने पर हमें प्राप्त होता है

A + B = 1 और Ab2 + Ba2 = 0

A + B = 1 और Ab2 + Ba2 = 0

A = `(-"a"^2)/"b"^2 "B"`

∴ `(-"a"^2)/"b"^2 "B" + "B"` = 1

`"B"((-"a"^2)/"b"^2 + 1)` = 1

⇒ `"B"((-"a"^2 + "b"^2)/"b"^2)` = 1

⇒ B = `"b"^2/("b"^2 - "a"^2)` और A = `(-"a"^2)/"b"^2 xx "b"^2/("b"^2 - "a"^2) = "a"^2/("a"^2 - "b"^2)`

तो A = `"a"^2/("a"^2 - "b"^2)` और B = `(-"b"^2)/("a"^2 - "b"^2)`

∴ `int x^2/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x = "a"^2/("a"^2 - "b"^2) int 1/(x^2 + "a"^2) "d"x - "b"^2/("a"^2 - "b"^2) int 1/(x^2 + "b"^2) "d"x`

= `"a"^2/("a"^2 - "b"^2) xx 1/"a" tan^-1  x/"a" - "b"^2/("a"^2 - "b"^2) * 1/"b" tan^-1  x/"b"`

= `"a"/("a"^2 - "b"^2) tan^-1  x/"a" - "b"/("a"^2 - "b"^2) tan^-1  x-"b" + "C"`

अत:, I = `1/("a"^2 - "b"^2) ["a" tan^-1  x/"a" - "b" tan^-1   x/"b"] + "C"`.

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 36 | पृष्ठ १६१

संबंधित प्रश्न

`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।


`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।


`int "e"^x (cosx - sinx)"d"x`  बराबर है


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


 यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×