मराठी

निम्नलिखित का मान निकालिए- dab∫x2dx(x2+a2)(x2+b2) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `

बेरीज

उत्तर

मान लीजिए I = `int (x^2)/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x`

आंशिक भिन्न के प्रयोजन के लिए x2 = t रखें।

हमें `"t"/(("t" + "a"^2)("t" + "b"^2))` मिलता है

`"t"/(("t" + "a"^2)("t" + "b"^2)) = "A"/("T" + "a"^2) + "B"/("t" + "b"^2)` रखो

⇒ `"t"/(("t" + "a"^2)("t" + "b"^2)) = ("A"("t" + "b"^2) + "B"("t" + "a"^2))/(("t" + "a"^2)("t" + "b"^2))`

⇒ t = At + Ab2 + Bt + Ba2

समान पदों की तुलना करने पर हमें प्राप्त होता है

A + B = 1 और Ab2 + Ba2 = 0

A + B = 1 और Ab2 + Ba2 = 0

A = `(-"a"^2)/"b"^2 "B"`

∴ `(-"a"^2)/"b"^2 "B" + "B"` = 1

`"B"((-"a"^2)/"b"^2 + 1)` = 1

⇒ `"B"((-"a"^2 + "b"^2)/"b"^2)` = 1

⇒ B = `"b"^2/("b"^2 - "a"^2)` और A = `(-"a"^2)/"b"^2 xx "b"^2/("b"^2 - "a"^2) = "a"^2/("a"^2 - "b"^2)`

तो A = `"a"^2/("a"^2 - "b"^2)` और B = `(-"b"^2)/("a"^2 - "b"^2)`

∴ `int x^2/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x = "a"^2/("a"^2 - "b"^2) int 1/(x^2 + "a"^2) "d"x - "b"^2/("a"^2 - "b"^2) int 1/(x^2 + "b"^2) "d"x`

= `"a"^2/("a"^2 - "b"^2) xx 1/"a" tan^-1  x/"a" - "b"^2/("a"^2 - "b"^2) * 1/"b" tan^-1  x/"b"`

= `"a"/("a"^2 - "b"^2) tan^-1  x/"a" - "b"/("a"^2 - "b"^2) tan^-1  x-"b" + "C"`

अत:, I = `1/("a"^2 - "b"^2) ["a" tan^-1  x/"a" - "b" tan^-1   x/"b"] + "C"`.

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 36 | पृष्ठ १६१

संबंधित प्रश्‍न

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int ("d"x)/(sin^2 x cos^2 x)`  बराबर है


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित का सत्यापन कीजिए-

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×