Advertisements
Advertisements
प्रश्न
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
उत्तर
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = `underline(1/2)`.
व्याख्या:
दिया गया है कि `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`
⇒ `1/4 int_0^"a" 1/((1/4 + x^2)) "d"x = pi/8`
⇒ `int_0^pi 1/([(1/2)^2 + x^2]) "d"x = pi/2`
⇒ `1/(1/2) [tan^-1 x/(1/2)]_0^"a" = pi/2`
⇒ `2[tan^-1 2"a" - tan^-1 0] = pi/2`
⇒ `tan^-1 2"a" = pi/4`
⇒ 2a = `tan pi/4`
⇒ 2a = 1
⇒ a = `1/2`
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
`int tan^-1 sqrtx "d"x` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.