Advertisements
Advertisements
प्रश्न
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
उत्तर
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = `"e"^x/(x + 4) + "C"`.
व्याख्या:
मान लीजिए I = `int (x + 3)/(x + 4)^2 * "e"^x "d"x`
= `int (x + 4 - 1)/(x + 4)^2 * "e"^x "d"x`
= `int [(x + 4)/(x + 4)^2 - 1/(x + 4)^2]"e"^x "d"x`
= `int [1/(x + 4) - 1/(x + 4)^2]"e"^x "d"x`
`1/(x + 4)` = t रखिए
⇒ `- 1/(x + 4)^2 "d"x` = dt
मान लीजिए f(x) = `1/(x + 4)`
∴ f'(x) = `- 1/(x + 4)^2`
`int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "C"` का उपयोग करते हुए
∴ I = `"e"^x * 1/(x + 4) + "C"`
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है