Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
उत्तर
मान लीजिए I = `int_"0"^pi (x"d"x)/(1 + sin x)` .....(i)
= `int_0^pi (pi - x)/(1 + sin(pi - x)) "d"x` ......`["उपयोग" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
= `int_0^pi (pi - x)/(1 + sinx) "d"x` ......(ii)
(i) और (ii), को जोड़ने पर हमें प्राप्त होता है
2I = `int_0^pi (x/(1 + sinx) + (pi - x)/(1 + sinx)) "d"x`
= `int_0^pi ((x + pi - x)/(1 + sinx))"d"x`
= `int_0^pi pi/(1 + sin x) "d"x`
= `pi int_0^pi 1/(1 + sinx) "d"x`
= `pi int_0^pi (1.(1 - sinx))/((1 + sinx)(1 - sinx)) "d"x`
= `pi int_0^pi (1 - sinx)/(1 - sin^2x) "d"x`
= `pi int_0^pi (1 - sinx)/(cos^x) "d"x`
= `pi int_0^pi (1/(cos^2x) - sinx/(cos^2x))"d"x`
= `pi int_0^pi (sec^2x - secx tanx)"d"x`
= `pi[tanx - sec]_0^pi`
= `pi[tan pi - tan 0) - (sec pi - sec 0)]`
2I = `pi[0 - (-1 - 1)`
= `pi`(2)
∴ I = `pi`
अत:, I = `pi`
APPEARS IN
संबंधित प्रश्न
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______