मराठी

निम्नलिखित का मान निकालिए- 0d∫0π xdx1+sinx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`

बेरीज

उत्तर

मान लीजिए I = `int_"0"^pi  (x"d"x)/(1 + sin x)`  .....(i)

= `int_0^pi (pi - x)/(1 + sin(pi - x)) "d"x`  ......`["उपयोग"  int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`

= `int_0^pi (pi - x)/(1 + sinx)  "d"x`  ......(ii)

(i) और (ii), को जोड़ने पर हमें प्राप्त होता है

2I = `int_0^pi (x/(1 + sinx) + (pi - x)/(1 + sinx)) "d"x`

= `int_0^pi ((x + pi - x)/(1 + sinx))"d"x`

= `int_0^pi  pi/(1 + sin x) "d"x`

= `pi  int_0^pi  1/(1 + sinx) "d"x` 

= `pi  int_0^pi  (1.(1 - sinx))/((1 + sinx)(1 - sinx)) "d"x`

= `pi int_0^pi (1 - sinx)/(1 - sin^2x) "d"x`

= `pi int_0^pi (1 - sinx)/(cos^x) "d"x`

= `pi int_0^pi (1/(cos^2x) - sinx/(cos^2x))"d"x`

= `pi int_0^pi (sec^2x - secx tanx)"d"x`

= `pi[tanx - sec]_0^pi`

= `pi[tan pi - tan 0) - (sec pi - sec 0)]`

2I = `pi[0 - (-1 - 1)`

= `pi`(2)

∴ I = `pi`

अत:, I = `pi`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 37 | पृष्ठ १६१

संबंधित प्रश्‍न

`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int sqrt(2"a"x - x^2)  "d"x`


निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


 `("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×