Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
उत्तर
मान लीजिए I = `int sqrt(2"a"x - x^2) "d"x`
= `int sqrt(-(x^2 - 2"a"x)) "d"x`
= `int sqrt(-(x^2 - 2"a"x + "a"^2 - "a"^2)) "d"x`
= `int sqrt(-[(x - "a")^2 - "a"^2]) "d"x`
= `int sqrt("a"^2 - (x - "a")^2) "d"x`
= `(x - "a")/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"` ......`["क्योंकि" int sqrt("a"^2 - x^2) "d"x = x/2sqrt("a"^2 - x^2) - "a"^2/2 sin^-1 x/"a" + "C"]`
= `(x - "a")/2 sqrt("a"^2 - (x^2 - 2"a"x + "a"^2)) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`
= `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 9(x - "a"0/"a") + "C"`
अत:, I = `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`.
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.