Advertisements
Advertisements
प्रश्न
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
उत्तर
अंश और हर को cos2x, से भाग देने पर, हमें प्राप्त होता है
I = `int (sec^2x "d"x)/(2tan^2x + 5)`
tanx = t रखिए
जिससे sec2x dx = dt होगा। तब,
I = `int "dt"/(2"t"^2 + 5) = 1/2 int "dt"/("t"^2 + (sqrt(5/2))^2`
= `1/2 sqrt(2)/sqrt(5) tan^-1 ((sqrt(2)"t")/sqrt(5)) + "C"`
= `1/sqrt(10) tan^-1 ((sqrt(2)tanx)/sqrt(5)) + "C"`
APPEARS IN
संबंधित प्रश्न
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
`int "e"^x (cosx - sinx)"d"x` बराबर है
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.