Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
उत्तर
मान लीजिए I = `int_0^pi x log sin x "d"x` ......(i)
= `int_0^pi (pi - x) log sin(pi - x) "d"x` ....`["उपयोग" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
I = `int_0^pi (pi - x) log sinx "d"x` ......(ii)
(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,
2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`
2I = `int_0^pi pilog sinx "d"x`
2I = `2oi int_0^(pi/2) log sinx "d"x` ......`["क्योंकि" int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`
∴ I = `pi int_0^(pi/2) log sinx "d"x` .....(iii)
I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`
I = `pi int_0^(pi/2) log cos x "d"x` ......(iv)
(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,
2I = `pi int_0^(pi/2) (log sinx + log cosx) "d"x`
2I = `pi int_0^(pi/2) log sin x cos x "d"x`
= `pi int_0^(pi/2) (log2 sin x cosx)/2 "d"x`
2I = `pi int_0^(pi/2) log sin 2x "d"x - pi int_0^(pi/2) log 2 "d"x`
2x = t रखिए
⇒ 2 dx = dt
⇒ dx = `"dt"/2`
2I = `pi int_0^pi log sin "t" "dt" - pi * log 2 int_0^(pi/2) 1 "d"x` ....[सीमा बदलना]
2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[समीकरण (iii) से]
2I – I = `- pi^2/2 log 2`
तो I = `pi^2/2 log (1/2)`
APPEARS IN
संबंधित प्रश्न
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
`int tan^-1 sqrtx "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.