मराठी

निम्नलिखित का मान निकालिए- d∫0πxlogsinxdx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`

बेरीज

उत्तर

मान लीजिए I = `int_0^pi x log sin x "d"x` ......(i)

= `int_0^pi (pi - x) log sin(pi - x) "d"x`  ....`["उपयोग" int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)"d"x]`

I = `int_0^pi (pi - x) log sinx  "d"x`  ......(ii)

(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,

2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`

2I = `int_0^pi pilog sinx  "d"x`

2I = `2oi int_0^(pi/2) log sinx  "d"x`  ......`["क्योंकि" int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`

∴ I = `pi int_0^(pi/2) log sinx  "d"x`   .....(iii)

I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`

I = `pi int_0^(pi/2) log cos x  "d"x`  ......(iv)

(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,

2I = `pi int_0^(pi/2) (log sinx + log cosx)  "d"x`

2I = `pi int_0^(pi/2) log sin x cos x  "d"x`

= `pi int_0^(pi/2)  (log2 sin x cosx)/2  "d"x`

2I = `pi int_0^(pi/2) log sin 2x  "d"x - pi int_0^(pi/2) log 2  "d"x`

2x = t रखिए

⇒ 2 dx = dt

⇒ dx = `"dt"/2`

2I = `pi int_0^pi  log sin "t"  "dt" - pi * log 2 int_0^(pi/2)  1 "d"x`  ....[सीमा बदलना]

2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[समीकरण (iii) से]

2I – I = `- pi^2/2 log 2`

तो I = `pi^2/2 log (1/2)`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 46 | पृष्ठ १६२

संबंधित प्रश्‍न

`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


`int ("d"x)/(sin^2 x cos^2 x)`  बराबर है


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


`int tan^-1 sqrtx  "d"x` बराबर है


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×