Advertisements
Advertisements
प्रश्न
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
उत्तर
हम जानते हैं कि `int_"a"^"b" "f"(x)"d"x = lim_("n"-> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`
I = `int _0^2 "e"^x "d"x` के लिए
हमारे पास a = 0 और b = 2 है।
∴ "h" = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`
∴ I = `int_0^2 e^x "d"x`
= `lim_("h"->0) "h" [1 + "e"^"h" + "e"^(2"h") + ... + "e"^(("n" - 1)"h")] `
= `lim_("h"->0) "h" [(1* ("e"^"h")^"n"-1)/("e"^"h" - 1)]`
= `lim_("h"->0) "h" (("e"^("nh" - 1))/("e"^"h" - 1))`
= `lim_("h"->0) "h" (("e"^2 - 1)/("e"^"h" - 1))`
= `"e"^2 lim_("h"->0) "h"/("e"^"h" - 1)`
= `"e"^2 - 1`
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.