मराठी

निम्नलिखित का मान निकालिए- d∫tanx dx (संकेत: tanx = t2 रखिए) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)

बेरीज

उत्तर

मान लीजिए I = `int sqrt(tanx)  "d"x` 

tan x = tरखिए

⇒ sec2x dx = 2t dt

∴ I = `int "t" * (2"t")/(sec^2x) "dt"`

= `2 int "t"^2/(1 + "t"^4) "dt"`

= `int (("t"^2 + 1) + ("t"^2 - 1))/((1 + "t"^4)) "dt"`

= `int ("t"^2 + 1)/(1 + "t"^4) "dt" + int ("t"^2 - 1)/(1 + "t"^4) "dt"`

= `int (1 + 1/"t"^2)/("t"^2 + 1/"t"^2) "dt" + int (1 - 1/"t"^2)/("t"^2 + 1/"t"^2) "dt"`

= `int (1 + 1/"t"^2)/(("t" - 1/"t")^2 + 2)"dt" + int (1 - 1/"t"^2)/(("t" + 1/"t")^2 - 2)"dt"`

u = `"t" - 1/"t"` रखिए

⇒ du = `(1 + 1/"t"^2)"dt"` पहले समाकल में

और v = `"t" + 1/"t"` रखिए

⇒ dv = `(1 - 1/"t"^2)"dt"` दूसरे समाकल में

∴ I = `int "du"/("u"^2 + (sqrt(2)^2)) + int "dv"/("v"^2 - (sqrt(2)^2))`

= `1/sqrt(2) tan^-1  "u"/sqrt(2) + 1/(2sqrt(2)) log|("v" - sqrt(2))/("v" + sqrt(2))| + "C"`

= `1/sqrt(2) tan^-1  ("t" - 1/"t")/sqrt(2) + 1/(2sqrt(2)) log |("t" + 1/"t" - sqrt(2))/("t" + 1/"t" + sqrt(2))| + "C"`

= `1/sqrt(2) tan^-1  ("t"^2 - 1)/(sqrt(2)"t") + 1/(2sqrt(2)) log |("t"^2 + 1 - sqrt(2)"t")/("t"^2 + 1 + sqrt(2)"t")| + "C"`

= `1/sqrt(2) tan^-1  ((tanx - 1)/sqrt(2tan x)) + 1/(2sqrt(2)) log |(tan x - sqrt(2 tanx) + 1)/(tan x + sqrt(2 tan x) + 1)| + "C"`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 43 | पृष्ठ १६२

संबंधित प्रश्‍न

`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


`int (sin^6x)/(cos^8x) "d"x` = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 ("d"x)/("e"^x + "e"^-x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int tan^-1 sqrtx  "d"x` बराबर है


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×