Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
उत्तर
मान लीजिए I = `int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2`
अंश और हर को cos4x, से भाग देने पर हमें प्राप्त होता है
I = `int_0^(pi/2) (sec^4x)/(("a"^2 cos^2x)/(cos^2x) + ("b"^2 sin^2x)/cos^2x)^2 "d"x`
= `int_0^(pi/2) (sec^2x * sec^2x)/("a"^2 + "b"^2 tan^2 x)^2 "d"x`
= `int_0^(pi/2) ((1 + tan^2x) sec^2x)/("a"^2 + "b"^2 tan^2 x)^2 "d"x`
tan x = t रखो
⇒ sec2x dx = dt
सीमाओं को बदलने पर, हम प्राप्त करते हैं
जब x = 0
t = tan 0 = 0
जब x = `pi/2`
t = `tan pi/2 = oo`
∴ I = `int_0^oo (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2 "dt"`
t2 = u केवल आंशिक भिन्न के प्रयोजन के लिए रखें
∴ `(1 +"u")/("a"^2 + "b"^2"u")^2 = "A"/(("a"^2 + "b"^2"u")) + "B"/("a"^2 + "b"^2"u")^2`
1 + u = A(a2 + b2u) + B
समान पदों के गुणांकों की तुलना करने पर, हम प्राप्त करते हैं
a2A + B = 1 and b2A = 1
⇒ A = `1/"b"^2`
अब `"a"^2 * 1/"b"^2 + "B"` = 1
⇒ B = `1 - "a"^2/"b"^2`
= `("b"^2 - "a"^2)/"b"^2`
∴ I = `int_0^oo (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2`
= `1/"b"^2 int_0^oo "dt"/("a"^2 + "b"^2"t"^2) + ("b"^2 - "a"^2)/"b"^2 int_0^oo "dt"/("a"^2 + "b"^2"t"^2)^2`
= `1/"b"^2 int_0^oo "dt"/("b"^2("a"^2/"b"^2 + "t"^2)) + ("b"^2 - "a"^2)/"b"^2 int_0^oo "dt"/("a"^2 + "b"^2"t"^2)^2`
= `1/"ab"^3 [tan^-1 "t"/("a"/"b")]_0^oo + ("b"^2 - "a"^2)/"b"^2 (pi/4 * 1/("a"^3"b"))`
= `1/"ab"^3 [tan^-1 oo - tan 0] + ("b"^2 - "a"^2)/"b"^2 (pi/(4"a"^3"b"))`
= `1/"ab"^3 * pi/2 + pi/4 * ("b"^2 - "a"^2)/("a"^2"b"^3)`
= `pi/(2"ab"^3) + pi/4 * ("b"^2 - "a"^2)/("a"^3"b"^3)`
= `pi [(2"a"^2 + "b"^2 - "a"^2)/(4"a"^3"b"^3)]`
= `pi/4 (("a"^2 + "b"^2)/("a"^3"b"^3))`
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int x^3/(x + 1)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.