मराठी

निम्नलिखित का मान निकालिए- dxab∫0π2 dx(a2cos2x+b2sin2x)2 (संकेत: अंश और हर को cos4x से भाग दीजिए) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)

बेरीज

उत्तर

मान लीजिए I = `int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` 

अंश और हर को cos4x, से भाग देने पर हमें प्राप्त होता है

I = `int_0^(pi/2)  (sec^4x)/(("a"^2 cos^2x)/(cos^2x) + ("b"^2 sin^2x)/cos^2x)^2 "d"x`

= `int_0^(pi/2)  (sec^2x * sec^2x)/("a"^2 + "b"^2 tan^2 x)^2  "d"x`

= `int_0^(pi/2) ((1 + tan^2x) sec^2x)/("a"^2 + "b"^2 tan^2 x)^2 "d"x`

tan x = t रखो

⇒ sec2x dx = dt

सीमाओं को बदलने पर, हम प्राप्त करते हैं

जब x = 0

t = tan 0 = 0

जब x = `pi/2`

t = `tan  pi/2 = oo`

∴ I = `int_0^oo (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2 "dt"`

t2 = u केवल आंशिक भिन्न के प्रयोजन के लिए रखें

∴ `(1 +"u")/("a"^2 + "b"^2"u")^2 = "A"/(("a"^2 + "b"^2"u")) + "B"/("a"^2 + "b"^2"u")^2`

1 + u = A(a2 + b2u) + B

समान पदों के गुणांकों की तुलना करने पर, हम प्राप्त करते हैं

a2A + B = 1 and b2A = 1

⇒ A = `1/"b"^2`

अब `"a"^2 * 1/"b"^2 + "B"` = 1

⇒ B = `1 - "a"^2/"b"^2`

= `("b"^2 - "a"^2)/"b"^2`

∴ I = `int_0^oo  (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2`

= `1/"b"^2 int_0^oo  "dt"/("a"^2 + "b"^2"t"^2) + ("b"^2 - "a"^2)/"b"^2  int_0^oo  "dt"/("a"^2 + "b"^2"t"^2)^2`

= `1/"b"^2 int_0^oo  "dt"/("b"^2("a"^2/"b"^2 + "t"^2)) + ("b"^2 - "a"^2)/"b"^2  int_0^oo  "dt"/("a"^2 + "b"^2"t"^2)^2`

= `1/"ab"^3 [tan^-1  "t"/("a"/"b")]_0^oo + ("b"^2 - "a"^2)/"b"^2 (pi/4 * 1/("a"^3"b"))`

= `1/"ab"^3 [tan^-1  oo - tan 0] + ("b"^2 - "a"^2)/"b"^2 (pi/(4"a"^3"b"))`

= `1/"ab"^3 * pi/2 + pi/4 * ("b"^2 - "a"^2)/("a"^2"b"^3)`

= `pi/(2"ab"^3) + pi/4 * ("b"^2 - "a"^2)/("a"^3"b"^3)`

= `pi [(2"a"^2 + "b"^2 - "a"^2)/(4"a"^3"b"^3)]`

= `pi/4 (("a"^2 + "b"^2)/("a"^3"b"^3))`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 44 | पृष्ठ १६२

संबंधित प्रश्‍न

x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 ("d"x)/("e"^x + "e"^-x`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int tan^-1 sqrtx  "d"x` बराबर है


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


`int x^3/(x + 1)` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×