मराठी

D∫tan-1x dx बराबर है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`int tan^-1 sqrtx  "d"x` बराबर है

पर्याय

  • `(x + 1) tan^-1sqrtx  – sqrtx + "C"`

  • `xtan^-1 sqrtx - sqrtx + "C"`

  • `sqrtx - x tan^-1 sqrtx + "C"`

  • `sqrtx - (x + 1) tan^-1 sqrtx + "C"`

MCQ

उत्तर

सही उत्तर `underline((x + 1) tan^-1sqrtx  – sqrtx + "C")`  है।

व्याख्या:

मान लीजिए I = `int 1 * tan^-1 sqrt(x)  "d"x`

= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1  sqrt(x))"'" int 1"d"x]"d"x`

= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x`  ....[ समाकलन द्वारा]

= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`

x = tरखिए

⇒ dx = 2t dt

∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`

= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`

= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`

= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`

= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 50 | पृष्ठ १६३

संबंधित प्रश्‍न

x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।


`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


निम्नलिखित का सत्यापन कीजिए-

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(xsqrt(x^4 - 1))`  (संकेत: x= sec `theta` रखिए)


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


`int x^3/(x + 1)` बराबर है


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×