Advertisements
Advertisements
प्रश्न
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
पर्याय
`sin ("b" - "a") log |(sin(x - "b"))/(sin(x - "a"))| + "C"`
`"cosec" ("b" - "a") log |(sin(x - "a"))/(sin(x - "b"))| + "C"`
`"cosec" ("b" - "a") log |(sin(x - "b"))/(sin(x - "a"))| + "C"`
`sin ("b" - "a") log |(sin(x - "a"))/(sin(x - "b"))| + "C"`
उत्तर
सही उत्तर `underline("cosec" ("b" - "a") log |(sin(x - "b"))/(sin(x - "a"))| + "C")` है।
व्याख्या:
मान लीजिए I = `int "dx"/(sin(x - "a")sin(x - "b"))`
हमें sin(b – a) से गुणा और भाग करना प्राप्त होता है
I = `1/(sin("b" - "a")) int (sin("b" - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x + "b" - x - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin[(x - "a") - (x - "b")])/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") cos(x - "b") - cos(x - "a") sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") * cos(x - "b"))/(sin(x - "a")*sin(x - "b")) - (cos(x - "a")*sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int [(cos(x - "b"))/(sin(x - "b")) - (cos(x - "a"))/(sin(x - "a"))]"d"x`
= `1/(sin("b" - "a")) int [cot(x - "b") - cot(x - "a")]"d"x`
= `1/(sin("b" - "a")) [log sin(x - "b") - logsin(x - "a")] + "C"`
= `1/(sin("b" - "a")) * log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
I = `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.