मराठी

निम्नलिखित का सत्यापन कीजिए- dC∫x-12x+3dx=x-log|(2x+3)2|+C - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`

बेरीज

उत्तर

L.H.S. = `int (2x - 1)/(2x + 3) "d"x`

⇒ `int (1 - 4/(2x + 3)) "d"x`  .....[अंश को हर से विभाजित करना]

⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`

⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`

⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`

⇒ `x - 2 log |x + 3/2| + "C"`

⇒ `x - 2 log |(2x + 3)/2| + "C"`

⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]

⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`

⇒ `x - log |(2x + 3)^2| + "C"_1`

⇒ R.H.S.  ......[जहाँ C1 = C – log 22]

L.H.S. = R.H.S.

इसलिए साबित हुआ।

L.H.S. = `int (2x - 1)/(2x + 3) "d"x`

⇒ `int (1 - 4/(2x + 3)) "d"x`  .....[अंश को भाजक से विभाजित करना]

⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`

⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`

⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`

⇒ `x - 2 log |x + 3/2| + "C"`

⇒ `x - 2 log |(2x + 3)/2| + "C"`

⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]

⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`

⇒ `x - log |(2x + 3)^2| + "C"_1`

⇒ R.H.S.  ......[Where C1 = C – log 22]

L.H.S. = R.H.S.

इसलिए साबित हुआ।

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 1 | पृष्ठ १५९

संबंधित प्रश्‍न

`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int sqrt(2"a"x - x^2)  "d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×