मराठी

दर्शाइए कि ∫0π2sin2xsinx+cosx=12log(2+1) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`

बेरीज

उत्तर

मान लीजिए I = `int_0^(pi/2) (sin^2x)/(sinx + cosx)  "d"x`

= `int_0^(pi/2) (sin^2(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x)) "d"x`  ....(P4 द्वारा)

⇒ I = `int_0^(pi/2) (cos^2x)/(sinx + cosx) "d"x`

अत:, हमें प्राप्त होता है: 2I = `1/sqrt(2)  int_0^(pi/2)  ("d"x)/(cos(x - pi/4))`

= `1/sqrt(2) int_0^(pi/2) sec(x - pi/2) "d"x`

= `1/sqrt(2) [log(sec(x - pi/4) + tan(x - pi/4))]_0^(pi/2)`

= `1/sqrt(2)[log(sec  pi/4 + tan  pi/4) - log sec(- pi/4) + tan(- pi/4)]`

= `1/sqrt(2) [log(sqrt(2) + 1) - log(sqrt(2) - 1)]`

= `1/sqrt(2) log|(sqrt(2) + 1)/(sqrt(2) - 1)|`

= `1/sqrt(2) log((sqrt(2) - 1)^2/1)`

= `2/sqrt(2) log(sqrt(2) + 1)`

अत:, I = `1/sqrt(2) log(sqrt(2) + 1)`.

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - हल किए हुए उदाहरण [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
हल किए हुए उदाहरण | Q 17 | पृष्ठ १५२

संबंधित प्रश्‍न

`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित का सत्यापन कीजिए-

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×