हिंदी

दर्शाइए कि ∫0π2sin2xsinx+cosx=12log(2+1) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`

योग

उत्तर

मान लीजिए I = `int_0^(pi/2) (sin^2x)/(sinx + cosx)  "d"x`

= `int_0^(pi/2) (sin^2(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x)) "d"x`  ....(P4 द्वारा)

⇒ I = `int_0^(pi/2) (cos^2x)/(sinx + cosx) "d"x`

अत:, हमें प्राप्त होता है: 2I = `1/sqrt(2)  int_0^(pi/2)  ("d"x)/(cos(x - pi/4))`

= `1/sqrt(2) int_0^(pi/2) sec(x - pi/2) "d"x`

= `1/sqrt(2) [log(sec(x - pi/4) + tan(x - pi/4))]_0^(pi/2)`

= `1/sqrt(2)[log(sec  pi/4 + tan  pi/4) - log sec(- pi/4) + tan(- pi/4)]`

= `1/sqrt(2) [log(sqrt(2) + 1) - log(sqrt(2) - 1)]`

= `1/sqrt(2) log|(sqrt(2) + 1)/(sqrt(2) - 1)|`

= `1/sqrt(2) log((sqrt(2) - 1)^2/1)`

= `2/sqrt(2) log(sqrt(2) + 1)`

अत:, I = `1/sqrt(2) log(sqrt(2) + 1)`.

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - हल किए हुए उदाहरण [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
हल किए हुए उदाहरण | Q 17 | पृष्ठ १५२

संबंधित प्रश्न

`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।


`int ("d"x)/(sin^2 x cos^2 x)`  बराबर है


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(xsqrt(x^4 - 1))`  (संकेत: x= sec `theta` रखिए)


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×