Advertisements
Advertisements
प्रश्न
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
उत्तर
हमें प्राप्त है:
I = `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` ....(1)
= `int_0^(pi/2) (tan^7(pi/2 - x))/(cot^7(pi/2 - x) + tan^7(pi/2 - x)) "d"x` ...... (p4 द्वारा)
= `int_0^(pi/2) (cot^7 (x) "d"x)/(cot^7x "d"x + tan^7x)` .....(2)
(1) और (2), को जोड़ने पर:
2I = `int_0^(pi/2) ((tan^7x + cot^7x)/(tan^7x + cot^7x))"d"x`
= `int_0^(pi/2) "d"x` या I = `pi/4`
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.