Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
उत्तर
मान लीजिए I = `int (x^2"d"x)/(x^4 - x^2 - 12)`
= `int x^2/(x^4 - 4x^2 + 3x^2 - 12) "d"x`
= `int x^2/(x^2(x^2 - 4) + 3(x^2 - 4)) "d"x`
= `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`
आंशिक भिन्न के प्रयोजन के लिए x2 = t रखें।
हमें `"t"/(("t" - 4)("t" + 3))` मिलता है,
Let `"t"/(("t" - 4)("t" + 3)) = "A"/("t" - 4) + "B"/("t" + 3)` .....[जहाँ A और B स्वेच्छिक अचर हैं]
`"t"/(("t" - 4)("t" + 3)) = ("A"("t" + 3) + "B"("t" - 4))/(("t" - 4)("t" + 3))`
⇒ t = At + 3A + Bt – 4B
समान पदों की तुलना करने पर हमें प्राप्त होता है
A + B = 1 और 3A – 4B = 0
⇒ 3A = 4B
∴ A = `4/3 "B"`
अब `4/3 "B" + "B"` = 1
`7/3 "B"` = 1
∴ B = `3/7` और A = `4/3 xx 3/7 = 4/7`
तो, A = `4/7` और B = `3/7`
∴ `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`
= `4/7 int 1/(x^2 - 4) "d"x + 3/7 int 1/(x^2 + 3) "d"x`
= `4/7 int 1/(x^2 - (2)^2) "d"x + 3/7 int 1/(x^2 + (sqrt(3)^2) "d"x`
= `4/7 xx 1/(2 xx 2) log|(x - 2)/(x + 2)| + 3/7 xx 1/sqrt(3) tan^-1 x/sqrt(3)`
= `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`
अत:, I = `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`.
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.