हिंदी

निम्नलिखित का मान निकालिए- d∫x2dxx4-x2-12 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`

योग

उत्तर

मान लीजिए I = `int (x^2"d"x)/(x^4 - x^2 - 12)`

= `int x^2/(x^4 - 4x^2 + 3x^2 - 12) "d"x`

= `int x^2/(x^2(x^2 - 4) + 3(x^2 - 4)) "d"x`

= `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`

आंशिक भिन्न के प्रयोजन के लिए x2 = t रखें।

हमें `"t"/(("t" - 4)("t" + 3))` मिलता है,

Let `"t"/(("t" - 4)("t" + 3)) = "A"/("t" - 4) + "B"/("t" + 3)` .....[जहाँ A और B स्वेच्छिक अचर हैं]

`"t"/(("t" - 4)("t" + 3)) = ("A"("t" + 3) + "B"("t" - 4))/(("t" - 4)("t" + 3))`

⇒ t = At + 3A + Bt – 4B

समान पदों की तुलना करने पर हमें प्राप्त होता है

A + B = 1 और 3A – 4B = 0

⇒ 3A = 4B

∴ A = `4/3 "B"`

अब `4/3 "B" + "B"` = 1

`7/3 "B"` = 1

∴ B = `3/7` और A = `4/3 xx 3/7 = 4/7`

तो, A = `4/7` और B = `3/7`

∴ `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`

= `4/7 int 1/(x^2 - 4)  "d"x + 3/7 int 1/(x^2 + 3)  "d"x`

= `4/7 int 1/(x^2 - (2)^2) "d"x + 3/7 int 1/(x^2 + (sqrt(3)^2)  "d"x`

= `4/7 xx 1/(2 xx 2) log|(x - 2)/(x + 2)| + 3/7 xx 1/sqrt(3) tan^-1  x/sqrt(3)`

= `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`

अत:, I = `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1  x/sqrt(3) + "C"`.

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 35 | पृष्ठ १६१

संबंधित प्रश्न

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int ("d"x)/(sin^2 x cos^2 x)`  बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int x/(x^4 - 1) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×