Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
उत्तर
माना `int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
= `int (2cos (5x + 4x)/2 * cos (5x - 4x)/2)/(1 - 2(2 cos^2 (3x)/2 - 1)) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(1 - 4 cos^2 (3x)/2 + 2) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(3 - 4 cos^2 (3x)/2) "d"x`
= `- int (2 cos (9x)/2 * cos x/2)/(4 cos^2 (3x)/2 - 3) "d"x`
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(4 cos^2 (3x)/2 - 3 cos (3x)/2) "d"x` ....`["गुणा करना और भाग देना" cos (3x)/2]`
= `int (2 cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos 3 * (3x)/2) "dx"` ......[∵ cos 3x = 4 cos3x – 3 cos x]
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos (9x)/2) "d"x`
= `- int 2 cos (3x)/2 * cos x/2 "d"x`
= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`
= `- int (cos 2x + cos x) "d"x` ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]
= `- int cos 2x "d"x - int cos x "d"x`
= `- 1/2 sin 2x - sin x + "C"`
अत:, I = `- [1/2 sin 2x + sin x] + "C"`
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int x^3/(x + 1)` बराबर है