Advertisements
Advertisements
प्रश्न
`int x^3/(x + 1)` बराबर है
विकल्प
`x + x^2/2 + x^3/3 - log|1 - x| + "C"`
`x + x^2/2 - x^3/3 - log|1 - x| + "C"`
`x - x^2/2 - x^3/3 - log|1 + x| + "C"`
`x - x^2/2 + x^3/3 - log|1 + x| + "C"`
उत्तर
सही उत्तर `underline(x - x^2/2 + x^3/3 - log|1 + x| + "C")` है।
व्याख्या:
I = `int x^3/(x + 1)`
= `int (x^3 + 1 - 1)/(x + 1) "d"x`
= `int (x^3 + 1)/(x + 1) "d"x - int 1/(x + 1) "d"x`
= `int (x^2 - x + 1)"d"x - int 1/(x + 1) "d"x`
= `x^3/3 - x^2/2 + x - log|x + 1| + "C"`
APPEARS IN
संबंधित प्रश्न
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.