Advertisements
Advertisements
प्रश्न
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
विकल्प
a = `(-1)/10`, b = `(-2)/5`
a = `1/10`, b = `- 2/5`
a = `(-1)/10`, b = `2/5`
a = `1/10`, b = `2/5`
उत्तर
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो `underline("a" = (-1)/10, "b" = 2/5)`
व्याख्या:
यह देखते हुए कि, `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`
अब, I = `int "dx"/((x + 2)(x^2 + 1))`
`1/((x + 2)(x^2 + 1)) = "A"/(x + 2) + ("B"x + "C")/(x^2 + 1)`
⇒ 1 = A(x2 + 1) + (Bx + C)(x + 2)
⇒ 1 = (A + B)x2 + (2B + C)x + A + 2C
गुणांक की तुलना करने पर, हम प्राप्त करते हैं
A + B = 0
A + 2C = 1
2B + C = 0
हल करने पर हमें A = `1/5` प्राप्त होता है,
B = `- 1/5`
और C = `2/5`
∴ `int "dx"/((x + 2)(x^2 + 1))`
= `1/5 int 1/(x + 2) "d"x + int (- 1/5 + 2/5)/(x^2 + 1) "d"x`
= `1/5 int 1/(x + 2) "d"x - 1/10 int (2x)/(1 + x^2) "d"x + 1/5 int 2/(1 + x^2) "d"x`
= `1/5 log|x + 2| - 1/10 log|1 + x^2| + 2/5 tan^-1x + "C"`
= `"a" log |1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"` ....(दिया गया)
∴ a = `(-1)/10`, b = `2/5`.
APPEARS IN
संबंधित प्रश्न
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.