Advertisements
Advertisements
प्रश्न
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
विकल्प
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
उत्तर
सही उत्तर `underline("a" = 1/3, "b" = –1)` है।
व्याख्या:
मान लीजिए I = `intx^3/sqrt(1 + x^2) "d"x`
1 + x2 = t रखें
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`
= `1/2 int sqrt("t") "dt" - 1/2 int "t"^((-1)/2) "dt"`
= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`
= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`
लेकिन I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`
हमें प्राप्त समान पदों की तुलना करने पर,
∴ a = `1/3` और b = –1.
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.