हिंदी

योग की सीमा के रूप में, d∫-12(7x-5)dx का मान निकालिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।

योग

उत्तर

यहाँ a = -1, b = 2, तथा h = `2 + 1/"n"` है।

अर्थात्‌, nh = 3 और f (x) = 7x - 5 है।

अब, हमें प्राप्त है:

`int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"["f"(-1) + "f"(-1 + "h") + "f"(-1 + 2"h") + ... + (-1 + ("n" - 1)"h")]`

ध्यान दीजिए कि

f(–1) = –7 – 5 = –12

f(–1 + h) = –7 + 7h – 5 = –12 + 7h

f(–1 + (n –1)h) = 7 (n – 1)h – 12.

अतः, `int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"[(-12) + (7"h" - 12) + (14"h" - 12) + ... + (7("n" - 1)"h" - 12)]`

= `lim_("h" -> 0) "h"[7"h"[1 + 2 + ... +("n" - 1)] - 12"n"]`

= `lim_("h" -> 0) "h"[7"h" (("n" - 1)"n")/2 - 12 "n"]`

= `lim_("h" -> 0) [7/2("nh")("nh" - "h") - 12"nh"]`

= `7/2(3 - 0) - 12 xx 3`

= `(7 xx 9)/2 - 36`

= `(-9)/2`.

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - हल किए हुए उदाहरण [पृष्ठ १४७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
हल किए हुए उदाहरण | Q 9 | पृष्ठ १४७

संबंधित प्रश्न

x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।


समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int "e"^x (cosx - sinx)"d"x`  बराबर है


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(2"a"x - x^2)  "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


 `("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×