Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
उत्तर
मान लीजिए I = `int sqrt(2"a"x - x^2) "d"x`
= `int sqrt(-(x^2 - 2"a"x)) "d"x`
= `int sqrt(-(x^2 - 2"a"x + "a"^2 - "a"^2)) "d"x`
= `int sqrt(-[(x - "a")^2 - "a"^2]) "d"x`
= `int sqrt("a"^2 - (x - "a")^2) "d"x`
= `(x - "a")/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"` ......`["क्योंकि" int sqrt("a"^2 - x^2) "d"x = x/2sqrt("a"^2 - x^2) - "a"^2/2 sin^-1 x/"a" + "C"]`
= `(x - "a")/2 sqrt("a"^2 - (x^2 - 2"a"x + "a"^2)) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`
= `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 9(x - "a"0/"a") + "C"`
अत:, I = `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`.
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int sinx/(3 + 4cos^2x) "d"x` = ______.