हिंदी

निम्नलिखित के मान निकालिए- ad∫2ax-x2 dx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित के मान निकालिए-

`int sqrt(2"a"x - x^2)  "d"x`

योग

उत्तर

मान लीजिए I = `int sqrt(2"a"x - x^2)  "d"x`

= `int sqrt(-(x^2 - 2"a"x))  "d"x`

= `int sqrt(-(x^2 - 2"a"x + "a"^2 - "a"^2))  "d"x`

= `int sqrt(-[(x - "a")^2 - "a"^2])  "d"x`

= `int sqrt("a"^2 - (x - "a")^2)  "d"x`

= `(x - "a")/2 sqrt("a"^2 - x^2) + "a"^2/2  sin^-1  ((x - "a")/"a") + "C"`  ......`["क्योंकि" int sqrt("a"^2 - x^2) "d"x = x/2sqrt("a"^2 - x^2) - "a"^2/2  sin^-1  x/"a" + "C"]`

= `(x - "a")/2 sqrt("a"^2 - (x^2 - 2"a"x + "a"^2)) + "a"^2/2  sin^-1  ((x - "a")/"a") + "C"`

= `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1  9(x - "a"0/"a") + "C"`

अत:, I = `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1  ((x - "a")/"a") + "C"`.

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 20 | पृष्ठ १६०

संबंधित प्रश्न

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


 यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int x/(x^4 - 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(xsqrt(x^4 - 1))`  (संकेत: x= sec `theta` रखिए)


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 ("d"x)/("e"^x + "e"^-x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int sinx/(3 + 4cos^2x) "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×