Advertisements
Advertisements
प्रश्न
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
उत्तर
हम f को f(x) = `{{:(2 - x",", "यदि" - 1 < x ≤ 0),(x + 2",", "यदि" 0 < ≤ 1),(3x",", "यदि" 1 < x ≤ 2):}` के रूप में पुन: परिभाषित कर सकते हैं।
अतः, `int_(-1)^2 "f"(x)"d"x = int_(-1)^0 (2 - x)"d"x + int_0^1 (x + 2)"d"x + int_1^2 3x"d"x` ....(P2 से)
= `(2x = x^2/2)_(-1)^0 + (x^2/2 + 2x)_0^1 + ((3x^2)/2)_1^2`
= `0 - (-2 - 1/2) + (1/2 + 2) + 3(4/2 - 1/2)`
= `5/2 + 5/2 + 9/2`
= `19/2`.
APPEARS IN
संबंधित प्रश्न
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrtx "d"x` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int sinx/(3 + 4cos^2x) "d"x` = ______.