हिंदी

D∫tan-1x dx बराबर है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`int tan^-1 sqrtx  "d"x` बराबर है

विकल्प

  • `(x + 1) tan^-1sqrtx  – sqrtx + "C"`

  • `xtan^-1 sqrtx - sqrtx + "C"`

  • `sqrtx - x tan^-1 sqrtx + "C"`

  • `sqrtx - (x + 1) tan^-1 sqrtx + "C"`

MCQ

उत्तर

सही उत्तर `underline((x + 1) tan^-1sqrtx  – sqrtx + "C")`  है।

व्याख्या:

मान लीजिए I = `int 1 * tan^-1 sqrt(x)  "d"x`

= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1  sqrt(x))"'" int 1"d"x]"d"x`

= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x`  ....[ समाकलन द्वारा]

= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`

x = tरखिए

⇒ dx = 2t dt

∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`

= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`

= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`

= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`

= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 50 | पृष्ठ १६३

संबंधित प्रश्न

`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int x/(x^4 - 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(xsqrt(x^4 - 1))`  (संकेत: x= sec `theta` रखिए)


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×