Advertisements
Advertisements
Question
`int tan^-1 sqrtx "d"x` बराबर है
Options
`(x + 1) tan^-1sqrtx – sqrtx + "C"`
`xtan^-1 sqrtx - sqrtx + "C"`
`sqrtx - x tan^-1 sqrtx + "C"`
`sqrtx - (x + 1) tan^-1 sqrtx + "C"`
Solution
सही उत्तर `underline((x + 1) tan^-1sqrtx – sqrtx + "C")` है।
व्याख्या:
मान लीजिए I = `int 1 * tan^-1 sqrt(x) "d"x`
= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1 sqrt(x))"'" int 1"d"x]"d"x`
= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x` ....[ समाकलन द्वारा]
= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`
x = t2 रखिए
⇒ dx = 2t dt
∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`
= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`
= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`
= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`
= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
APPEARS IN
RELATED QUESTIONS
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.