English

निम्नलिखित का मान निकालिए- ad∫sin-1xa+xdx (संकेत: x = a tan2θ रखिए) - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)

Sum

Solution

मान लीजिए I = `int sin^-1 sqrt(x/("a" + x)) "d"x`

x = a tan2θ रखिए

dx = 2a tan θ . sec2θ . dθ

∴ I = `int sin^-1 sqrt(("a" tan^2theta)/("a" + "a" tan^2 theta)) * 2"a" tan theta * sec^2theta "d"theta`

= `int sin^-1  (sqrt("a") tan theta)/(sqrt("a") tan theta) * 2"a" tan theta * sec theta  "d"theta`

= `int sin^-1  ((sintheta/costheta)/(1/costheta)) * 2"a" tan theta * sec^2theta  "d"theta`

= `int sin^-1 (sin theta) * 2"a" tan theta * sec^2theta  "d"theta`

= `2"a" int theta tan theta * sec^2theta  "d"theta`

= `2"a"[theta int tan theta * sec^2 theta  "d"theta - int ["D"(theta) * int tan theta * sec^2 theta  "d"theta]]`

= `2"a" [theta * (tan^2theta)/2 - int (1*tan^2theta)/2  "d"theta]`

= `2"a"[theta * (tan^2theta)/2 - 1/2 int (sec^2theta - 1)"d"theta]`

= `2"a"[theta* (tan^2theta)/2 - 1/2 (tantheta - theta)]`

= `2"a"[theta * (tan^2theta)/2 - 1/2 tan theta + 1/2 theta]`

= `2"a"[tan^-1 sqrt(x/"a") * x/(2"a") - 1/2 sqrt(x/"a") + 1/2 tan^-1 sqrt(x/"a")] + "C"`

= `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`

अत:, I =  `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`

shaalaa.com
समाकलन
  Is there an error in this question or solution?
Chapter 7: समाकल - प्रश्नावली [Page 161]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 7 समाकल
प्रश्नावली | Q 40 | Page 161

RELATED QUESTIONS

`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।


`int "e"^x (cosx - sinx)"d"x`  बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))`  (संकेत: x sinθ रखिए)


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×