Advertisements
Advertisements
Question
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
Solution
मान लीजिए I = `int sin^-1 sqrt(x/("a" + x)) "d"x`
x = a tan2θ रखिए
dx = 2a tan θ . sec2θ . dθ
∴ I = `int sin^-1 sqrt(("a" tan^2theta)/("a" + "a" tan^2 theta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sqrt("a") tan theta)/(sqrt("a") tan theta) * 2"a" tan theta * sec theta "d"theta`
= `int sin^-1 ((sintheta/costheta)/(1/costheta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sin theta) * 2"a" tan theta * sec^2theta "d"theta`
= `2"a" int theta tan theta * sec^2theta "d"theta`
= `2"a"[theta int tan theta * sec^2 theta "d"theta - int ["D"(theta) * int tan theta * sec^2 theta "d"theta]]`
= `2"a" [theta * (tan^2theta)/2 - int (1*tan^2theta)/2 "d"theta]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 int (sec^2theta - 1)"d"theta]`
= `2"a"[theta* (tan^2theta)/2 - 1/2 (tantheta - theta)]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 tan theta + 1/2 theta]`
= `2"a"[tan^-1 sqrt(x/"a") * x/(2"a") - 1/2 sqrt(x/"a") + 1/2 tan^-1 sqrt(x/"a")] + "C"`
= `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
अत:, I = `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
APPEARS IN
RELATED QUESTIONS
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______