Advertisements
Advertisements
Question
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Solution
मान लीजिए I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x` ......(i)
= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x` ......`["क्योंकि" int_"a" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`
= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`
= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)
(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,
2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`
= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`
= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`
∴ 2I = `int_(-pi/4)^(pi/4) log cos2x "d"x`
2I = `2 int_0^(pi/4) log cos 2x "d"x` .....`["क्योंकि" int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x "if" "f"(-x) = "f"(x)]`
∴ I = `int_0^(pi/4) log cos 2x "d"x`
2x = t रखो
⇒ dx = `"dt"//2`
हमें मिलने वाली सीमाओं को बदलना
जब x = 0
∴ t = 0
जब x = `pi/4`
∴ t = `pi/2`
I = `1/2 int_0^(pi/2) log cos "t" "dt"` ......(iii)
I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`
I = `1/2 int_0^(pi/2) log sin "t" "dt"` ......(iv)
(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,
2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`
⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t" "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`
⇒ 4I = `int_0^(pi/2) log sin 2"t" "dt" - int_0^(pi/2) log 2 "dt"`
2t = u रखिए
⇒ 2dt = du
⇒ dt = `"du"/2`
∴ 4I = `1/2 int_0^pi log sin "u" "du" - int_0^(pi/2) log 2 * "dt"`
⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u" "du" - log 2["t"]_0^(pi/2)`
⇒ 4I = `int_0^(pi/2) log sin "u" "du" - log 2 * pi/2`
⇒ 4I = `2"I" - pi/2 log 2` .....[समीकरण (ii) से]
⇒ 2I = `- pi/2 log 2`
⇒ I = `pi/4 log 1/2`
∴ I = `pi/4 log 1/2`.
APPEARS IN
RELATED QUESTIONS
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int tan^-1 sqrtx "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.