Advertisements
Advertisements
Question
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
Solution
मान लीजिए I = `int_0^pi x sin x cos^2x "d"x` ....(i)
I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`
I = `int_0^pi (pi - x) sin x cos^2x "d"x` .....(ii)
(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,
2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`
2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`
2I = `int__0^pi pi sin x cos^2x "d"x`
= `pi int_0^pi sin x cos^2x "d"x`
cos x = t रखें
⇒ – sin x dx = dt
⇒ sin x dx = – dt
सीमाएँ बदलना, हमारे पास है
जब x = 0
t = cos 0 = 1
जब x = `pi`
= cos `pi` = – 1
2I = `pi int_1^(-1) - "t"^2 "dt"`
= `- pi int_1^(-1) "t"^2 "dt"`
2I = `pi int_(-1)^1 "t"^2 "dt"` ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`
2I = `pi["t"^3/3]_(-1)^1`
= `pi[1/3 + 1/3]`
= `pi(2/3)`
∴ I = `pi/3`
APPEARS IN
RELATED QUESTIONS
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
`int tan^-1 sqrtx "d"x` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int sinx/(3 + 4cos^2x) "d"x` = ______.