English

निम्नलिखित का मान निकालिए- d∫0xxsinxcos2xdx - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`

Sum

Solution

मान लीजिए I = `int_0^pi x sin x cos^2x "d"x`  ....(i)

I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`

I = `int_0^pi (pi - x) sin x cos^2x "d"x`  .....(ii)

(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,

2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`

2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`

2I = `int__0^pi pi sin x cos^2x "d"x`

= `pi int_0^pi sin x cos^2x "d"x`

cos x = t रखें

⇒ – sin x dx = dt

⇒ sin x dx = – dt

सीमाएँ बदलना, हमारे पास है

जब x = 0 

t = cos 0 = 1

जब x = `pi` 

= cos `pi` = – 1

2I = `pi int_1^(-1) - "t"^2 "dt"`

= `- pi int_1^(-1) "t"^2 "dt"`

2I = `pi int_(-1)^1 "t"^2 "dt"`  ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`

2I = `pi["t"^3/3]_(-1)^1`

= `pi[1/3 + 1/3]`

= `pi(2/3)`

∴ I = `pi/3`

shaalaa.com
समाकलन
  Is there an error in this question or solution?
Chapter 7: समाकल - प्रश्नावली [Page 161]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 7 समाकल
प्रश्नावली | Q 33 | Page 161

RELATED QUESTIONS

`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


 यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(xsqrt(x^4 - 1))`  (संकेत: x= sec `theta` रखिए)


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int sqrt(tanx)  "d"x`  (संकेत: tanx = t2 रखिए)


निम्नलिखित का मान निकालिए-

`int_0^pi x log sin x "d"x`


`int tan^-1 sqrtx  "d"x` बराबर है


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int sinx/(3 + 4cos^2x) "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×