English

यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो fgd∫0af(x)⋅g(x)dx बराबर है - Mathematics (गणित)

Advertisements
Advertisements

Question

 यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है

Options

  • `a/2`

  • `"a"/2 int_0^"a" "f"(x)"d"x`

  • `int_0^"a" "f"(x)"d"x`

  • `"a" int_0^"a" "f"(x)"d"x`

MCQ

Solution

सही उत्तर `underline("a"/2 int_0^"a" "f"(x)"d"x)` है।

व्याख्या:

क्योंकि I = `int_0^"a" "f"(x) * "g"(x)"d"x`

= `int_0^"a" "f"("a" - x) "g"("a" - x)"d"x`

= `int_0^"a" "f"(x)("a" - "g"(x))"d"x`

= `"a" int_0^"a" "f"(x) "d"x - int_0^"a" "f"(x) * "g"(x)"d"x`

= `"a" int_0^"a" "f"(x)"d"x - 1`

या 1 = `"a"/2 int_0^"a" "f"(x)"d"x`

shaalaa.com
समाकलन
  Is there an error in this question or solution?
Chapter 7: समाकल - हल किए हुए उदाहरण [Page 156]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 7 समाकल
हल किए हुए उदाहरण | Q 24 | Page 156

RELATED QUESTIONS

`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int (x^2  "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int "e"^x (cosx - sinx)"d"x`  बराबर है


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 "e"^x "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int "e"^(-3x) cos^3x  "d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int tan^-1 sqrtx  "d"x` बराबर है


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×